The Alliance Exchange

Talking Human Relevant Science

New Approach Methodologies (NAMs) and their relevance to human research and drug development

Dr Lilas Courtot

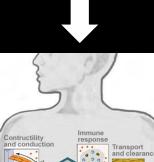
Science Manager

May 22nd 2023

Drug Development: a 'Business' in Crisis

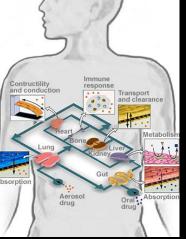
The overall likelihood of approval (LOA) for all developmental candidates over 2011–2020 was 7.9%

Cost \rightarrow \$2.6 billion


Time \rightarrow 10-15 years

With over 90% failure rate, NO other sector has such figures and continues to exist with the bravado of business as usual...

Source: https://pharmaintelligence.informa.com/resources/product-content/2021-clinical-development-success-rates


Presentation Outline

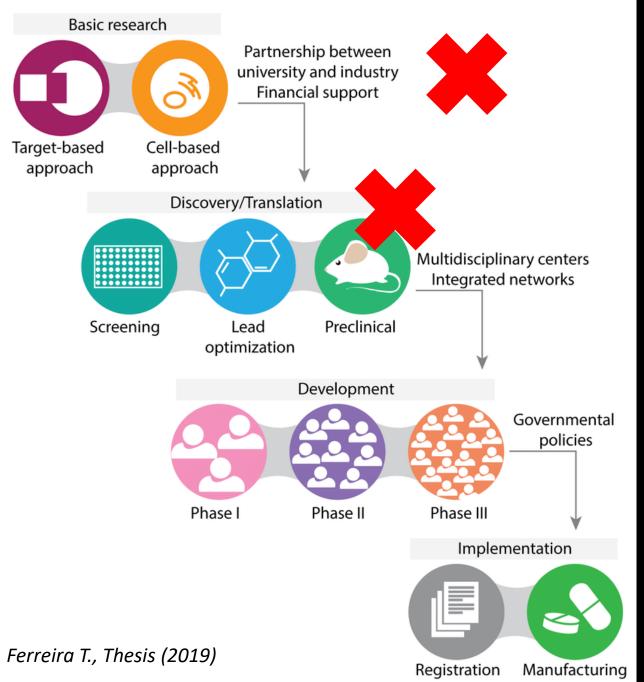
In vitro: from 2D cell model to Organ-On-Chip

Current and Future Challenges and Opportunities

Lost in Translation – Why animal studies are failing R&D

Several thousand human diseases, only ~500 have treatments available

Many years of high-cost failures (ethical and financial)



Translation failure due to inadequate preclinical models

Too much reliance on animals

Drug Discovery Pipeline

Key issues with animal studies

No specificity (not humans)

Low reproducibility

Risk of missing targets

Not ethical

Lost in Translation – Why Animal Studies Are Failing R&D

Key observations and facts

<u>Only 1/3</u> of highly cited animal research tested in human trials

<u>Overestimate by about 30%</u> treatment effectiveness

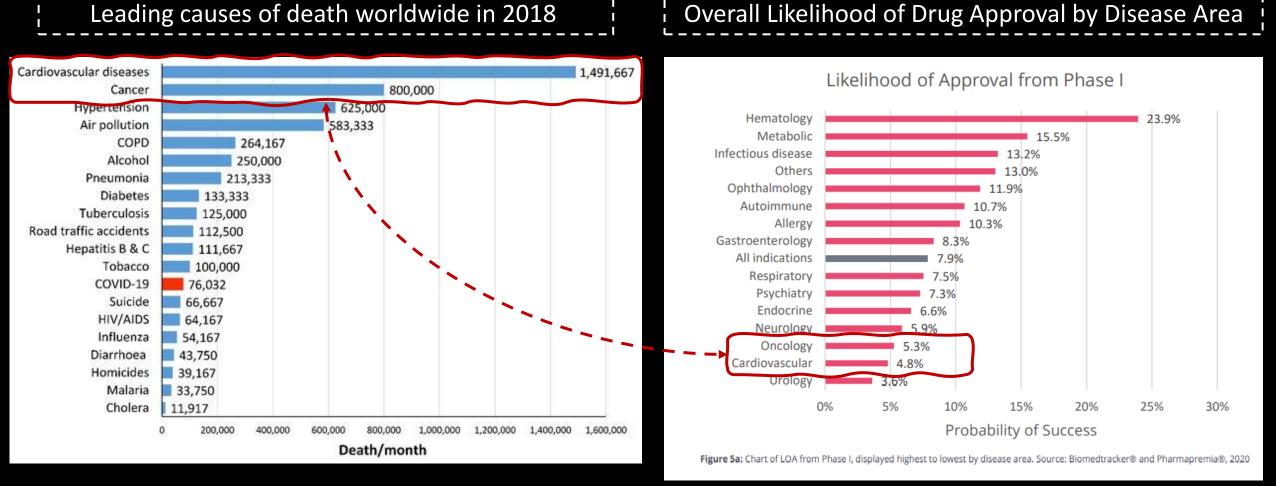
<u>41% to 89% differences in gene regulation</u> between human and mouse

Significant <u>metabolic</u> difference between human and mouse

Other cells or mechanisms, leading to misinterpretation

Animal studies = poor science

No best practice standards exist


Lab environment (stress, food etc.)

No gender or age balance

Unpublished negative results

Focusing on the wrong 'whole organism'

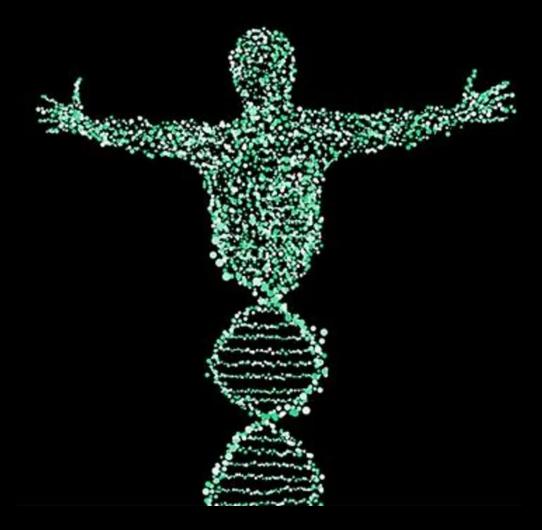
Developing new drugs is an <u>Emergency</u>

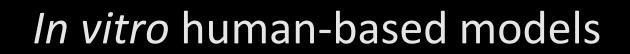
Based on the World Health Organization (WHO) report 2018

The Case of Rheumatoid Arthritis

	Save	Email Send to		Sorted by:	Best matc	h Display op	otions 🕇	¢
MY NCBI FILTERS	22,532	22,532 results		« < 1	Page	of 2,254	>	»
RESULTS BY YEAR	1 Cite Share	Collagen-induced art Brand DD, Latham KA, Rosle Nat Protoc. 2007;2(5):1269 PMID: 17546023 The collagen-induced arth model of rheumatoid arthri an emulsion of complete Fre	oniec EF. 9-75. doi: 10.1038/nprot.200 hritis (CIA) mouse model is itis. Autoimmune arthritis is	the most c s induced i	-			th

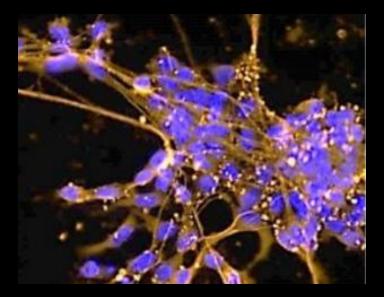
Time to switch to new and <u>more</u> <u>human-focused</u> <u>models</u>


Inertia towards New Approach Methodologies (NAMs)


Experimentation

No	of Animal Studies for	cine
h F 💽 animals		MDPI
IS Commentary Modernizing M Review Article	edical Research to Benefit People an	d Animals
Lost in translation: a cancer treatment	Anais da Academia Brasileira de Ciências (2019) 91(Suppl. 1): e20170238 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 http://dx.doi.org/10.1590/0001-3765201720170238	The second secon
Special Section: Moving Fo	www.scielo.br/aabc www.fb.com/aabcjournal	
The Flaws and Huma		

Animal models in biological and biomedical research – experimental and ethical concerns


To accelerate breakthroughs in research and drug development there is an urgent need to use the potential of human model systems offered by New **Approach Methodologies** (NAMs)

Human-derived 2D in vitro models

iPSC, mono-layers, spheroids, co-culture

Cassotta et al., ALTEX (2022)

Advantages

Easy to generate and maintain

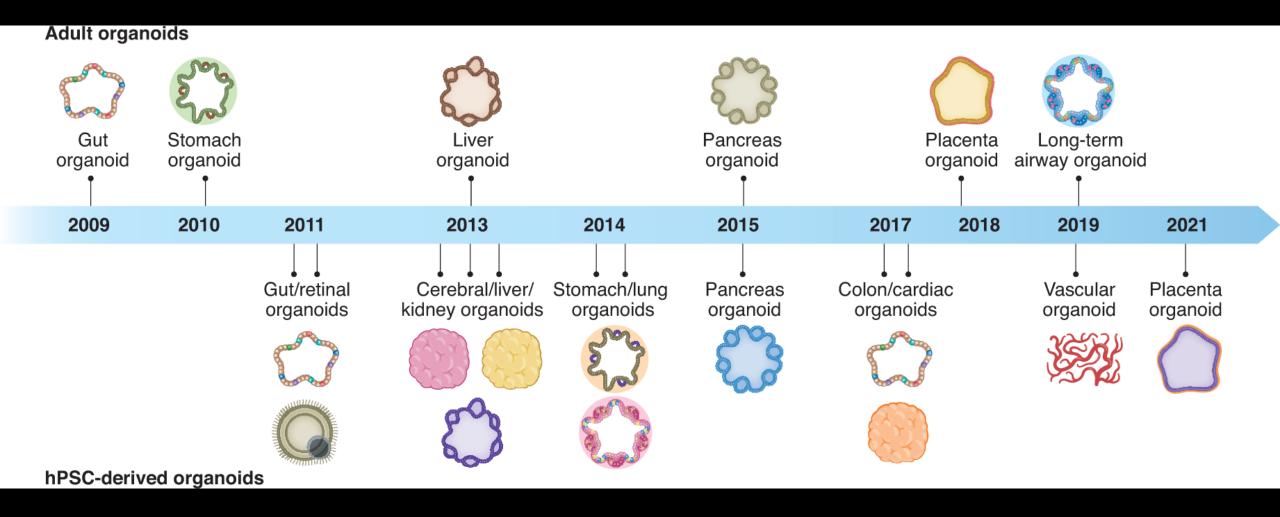
Low cost

Highly reproducible

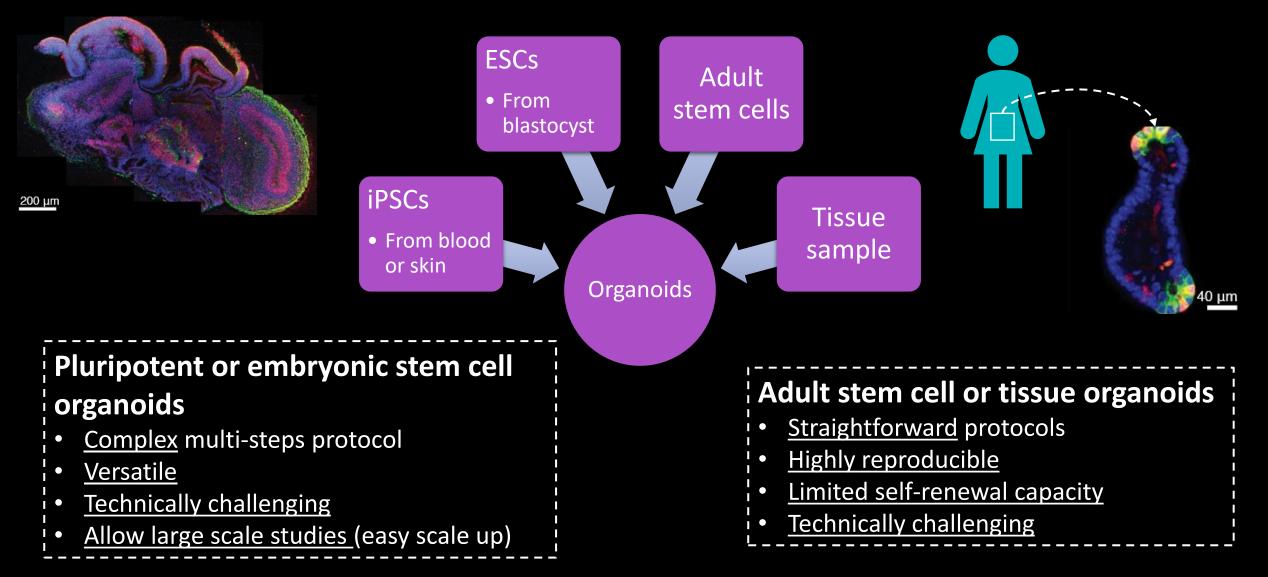
Good for <u>high-throughput</u> <u>screening of drug</u>

Limitations

Non natural morphology (flat dishes, monolayers)

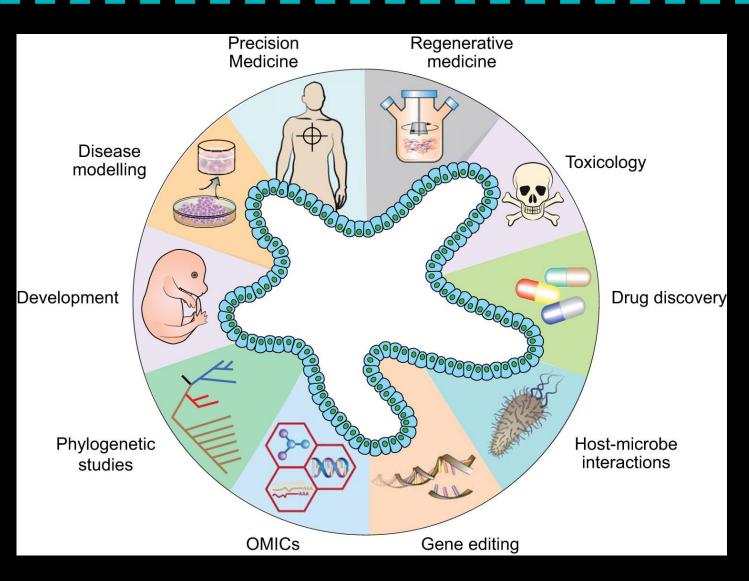

Lack of micro-environment

No cellular heterogeneity

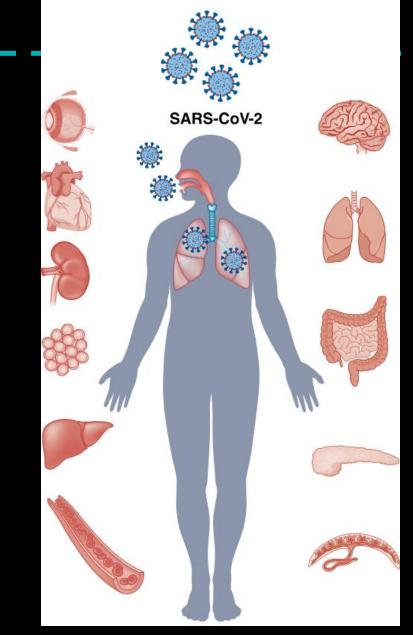

Unnatural adhesion forces

Non-predictive/ poor relevance

Human-derived 3D Organoids – More than 10 Years of History



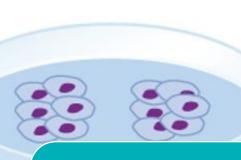
Human-derived 3D Organoids



Adapted from Wang, Q., et al. Sig Transduct Target Ther (2022)

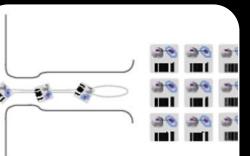
Human-derived 3D Organoids – Applications

Wang, Q., Guo, F., Jin, Y. et al. Sig Transduct Target Ther (2022)



Han, Y., et al. Nat Methods 19, 418-428 (2022)

The Organoid Cell Atlas – Openly Available in a "living biobank"



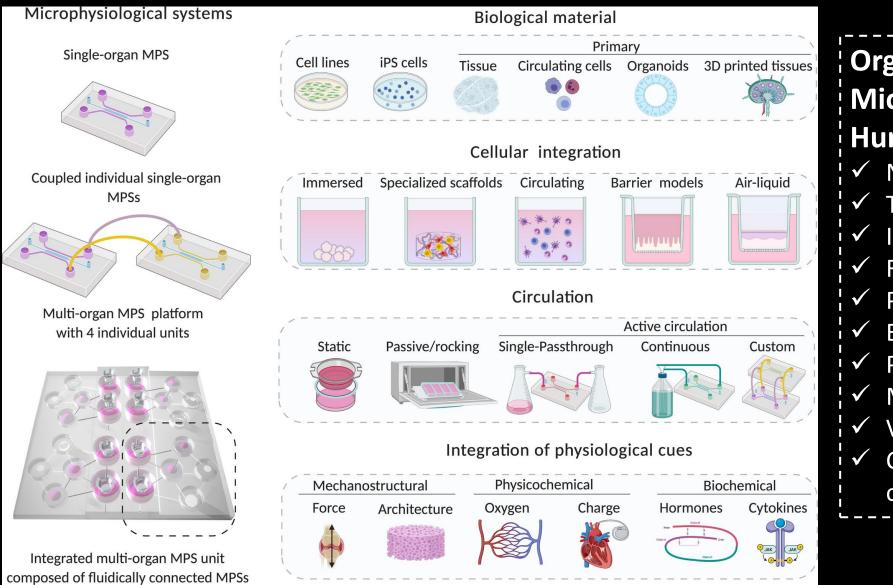
- Connect cell types in organoids vs in tissue
- Identify and flag outliers

Improving organoids

- Infer key regulators from single-cell profiling data
- Refine and validate protocols

Applying organoids

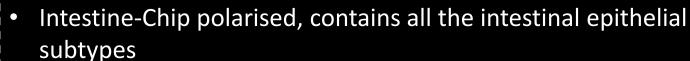
- Induce functional perturbations
- Asses effects by single-cell sequencing


https://hca-organoid.eu/

HCA Organoid has received funding from the European Union's Horizon 2020 research and innovation programme

Bock, C. et al. Nat Biotechnol (2021)

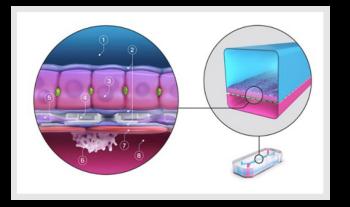
Human Organ-On-Chip


Organ-On-Chip = Microscale Models of Human Physiology

- Natural cell morphology
- ✓ Tissue-tissue interfaces
- Immune system
- Real time monitoring
- Patient specific
- Experimental versatility
- Physiological relevance
- Mechanical forces
- Versatile
- Can be combined and connected (body-on-chip)

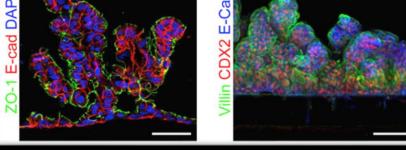
Trapecar, M. FEBS Lett, (2022)

Human Organ-On-Chip – Last Breakthroughs

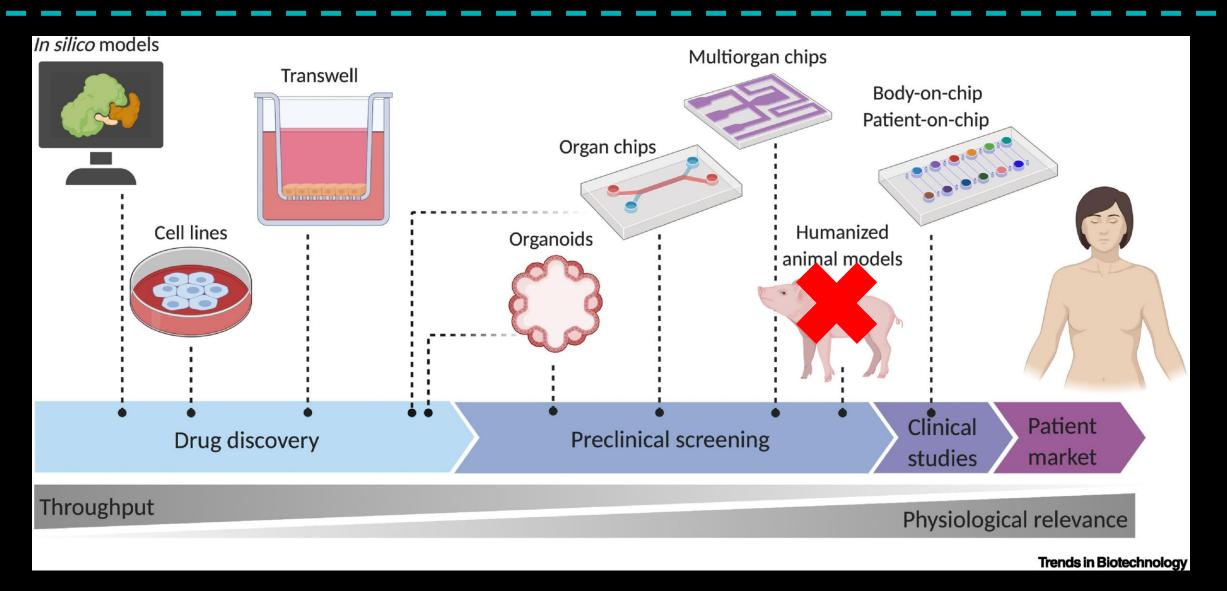

Biologically responsive to exogenous stimuli

Workman MJ. et al., Cell Mol Gastroenterol Hepatol (2017)

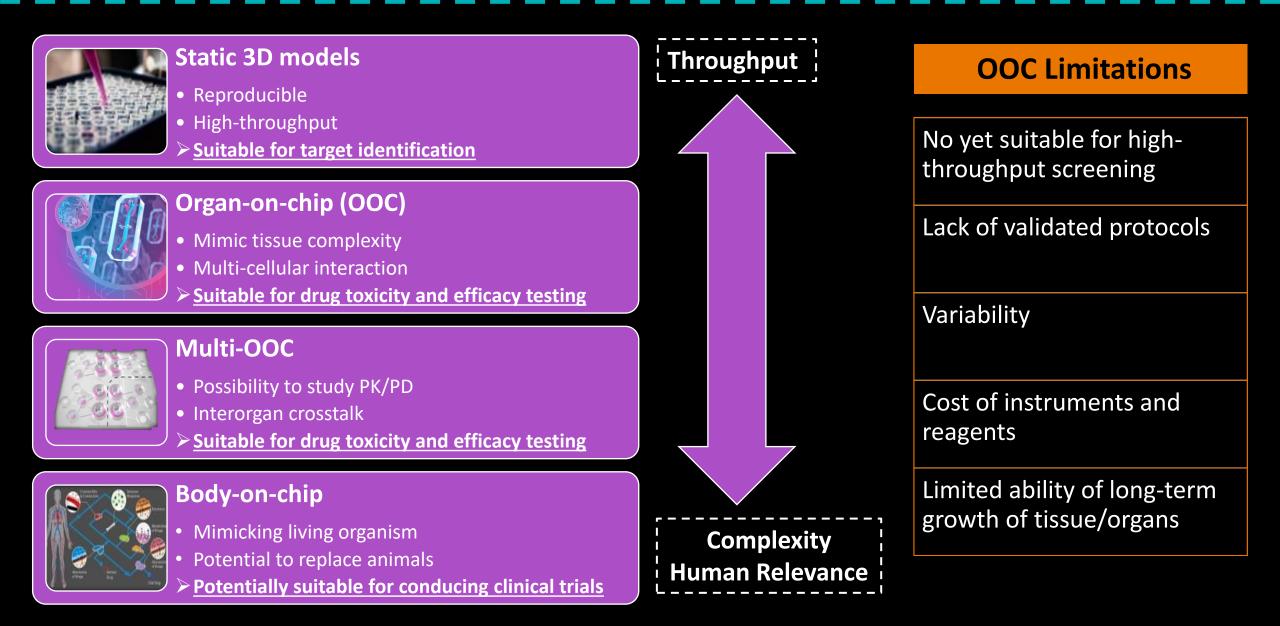
Systematic and quantitative evaluations of Liver-Chips' predictive value



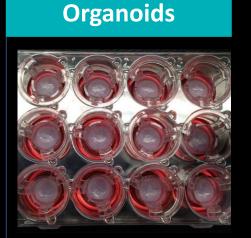
ledars



- A blinded set of 27 known hepatotoxic and non-toxic drugs
- 870 Liver-Chips
- Sensitivity of 87% and a specificity of 100%.
- \$3 billion annual benefit for Pharm companies

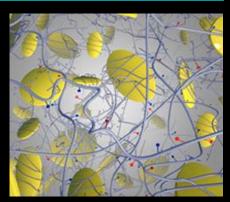


Body-On-Chip to Replace Animals for a Fully Human-based Pipeline

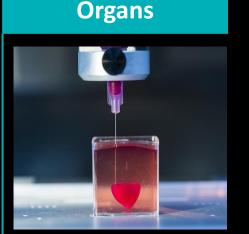


Jalili-Firoozinezhad S, et al., Trends Biotechnol. (2021)

Defining the <u>right</u> in Vitro model for drug discovery

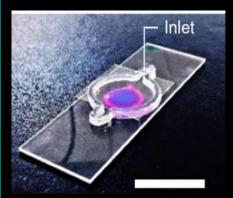


3D Bioprinting



- Patient-Specific Disease Modelling
- Drug testing

Biomaterials



- Hydrogels
- Scaffolds

- Drug testing
- Regenerative
 medicine
- Organ transplant

- Patient-Specific
 Disease
 Modelling
- Drug discovery

- Can use patient cells
- Recapitulate the human tumour tissues and microenvironment for <u>high-throughput drug screening</u>.
- Must be <u>optimised</u> such that cell viability and multi-omics profiles are preserved during the printing process.

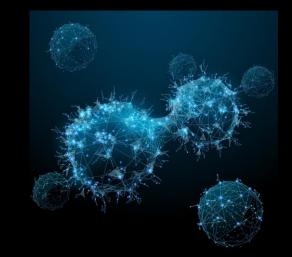
data, epochs, minijer (W, a) +b) weights): suss(:==1); sizes(1:1)) an sizes(1:1) st = len(test_data) (training_data) Dut eta, Multiple hidden Layers data[k:k+mini_batch_size] _aver . mini_batch_sime (mini_batch/ etc) (a): (1) valuate(test_data), n_test) ch {0} complete".format(self, mini_betch, eta): (D. chape) for b in self.biases) (w.chape) for w in set bot ch: weights delta nable w batch)) ny (self.weights, nuble w) cto//len(mini_batch)) na6la_b)] b, nb in zip(self.bic y): os(b.shape) for b in melf.bioses) os(w.shape) for w in self weights self.weights): t. bioses, activetion)+b igmoid(z) pend(activation) derivative(activations[(delta, activations[-2].transpose()) (self.weigenetelei].treepose(), delta) * sp delta De Lta (delta, activations[-l-1].transpose())

In silico: Big data, Al and computer modelling

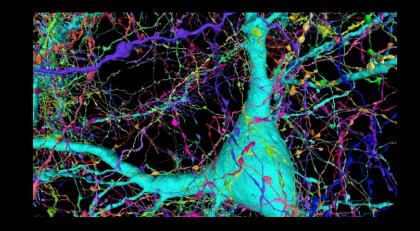
Big data – Single cell Omics/ Multi-omics

Biobank

Cohorts

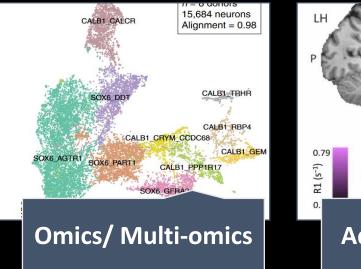

Key applications

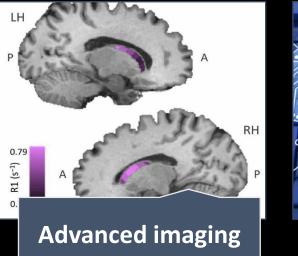
- Finding biomarkers
- Defining genetic and environmental risk factors
- Stratifying patients' population
- Define the molecular mechanisms underlying diseases

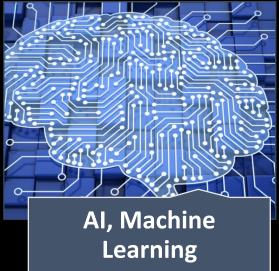

Artificial Intelligence 'AI' and computer modelling

Key applications

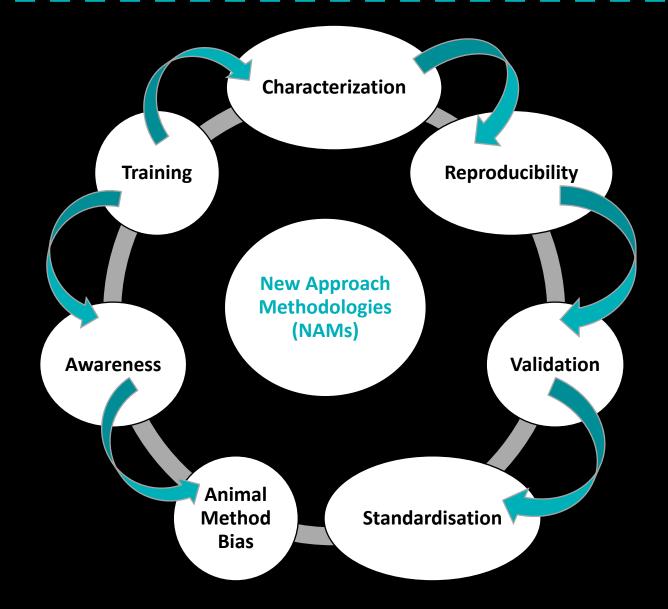
- Computational augmentation of existing clinical and imaging data sets
- Combine genomic and clinical data to detect new predictive models
- Predict drug toxicity and long term effect
- Predict pharmaceutical properties of molecular compounds and targets
- Faster and better disease diagnoses and progression monitoring
- Optimise drug development and patient treatment




frontiers in Physiology	ORIGINAL RESEARCH published: 12 September 2017 doi: 10.3389/fphys.2017.00668
	Cherch for uppedage
	Human <i>In Silico</i> Drug Trials Demonstrate Higher Accuracy than Animal Models in Predicting Clinical Pro-Arrhythmic Cardiotoxicity
	Elisa Passini1*, Oliver J. Britton1, Hua Rong Lu2, Jutta Rohrbacher2, An N. Hermans2, David J. Gallacher2, Robert J. H. Greig3, Alfonso Bueno-Orovio1 and Blanca Rodriguez1



The power of combining NAMs



Future challenges and opportunities

Most NAMs do not seek to provide a like-for-like replacement or simulation of an existing animal test, but instead approach the problem ¦ from a human data-driven and ¦ mechanistic perspective that provides a deeper biological understanding of the mechanisms involved in human conditions, drug efficacy as well as toxicity.

Wind of change?

U.S FDA Modernization Act 2.0

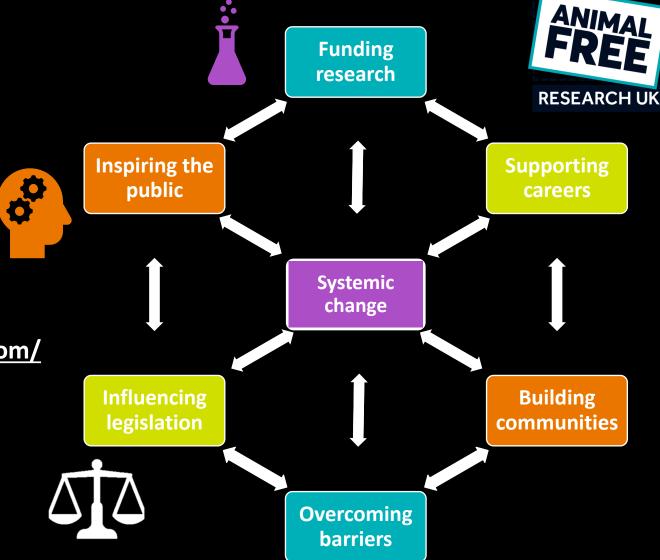
"This bill allows an applicant for market approval for a new drug to use methods other than animal testing to establish the drug's safety and effectiveness. Under this bill, these alternative methods may include cell-based assays, organ chips and microphysiological systems, computer modeling, and other human biology-based test methods."

Roche launches Institute of Human Biology

- Brings together scientists from academia and industry
- To lead the broad adoption of human model systems in pharmaceutical R&D as well as in clinical practice.
- To accelerate breakthroughs in R&D by unlocking the potential of human model systems.
- To better predict which drug candidates are safe and most effective in patients by evolving and increasing the use of human model systems.

How can we work together?

https://www.animalfreeresearchuk.org/


- Science Conference: 4-5 October 2023 (Cambridge)
 - TED-talk
 - Helpathon
 - Poster
- Community of Practice Platform
 - <u>https://animalfreeresearchcommunity.com/</u>

lilas@animalfreeresearchuk.org

Sources

- <u>https://ncats.nih.gov/files/NCATS_Factsheet_508.pdf</u>
- Mak IW, Evaniew N, Ghert M. Lost in translation: animal models and clinical trials in cancer treatment. Am J Transl Res. 2014 Jan 15;6(2):114-8. <u>https://pubmed.ncbi.nlm.nih.gov/24489990/</u>
- Seok J, Warren HS, et al., Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci U S A. 2013 Feb 26;110(9):3507-12. <u>https://doi.org/10.1073/pnas.1222878110</u>
- Gawrylewski A. The Trouble with Animal Models. The Scientist 2007. <u>https://www.the-scientist.com/uncategorized/the-trouble-with-animal-models-46344</u>
- Bailey J. Does the Stress of Laboratory Life and Experimentation on Animals Adversely Affect Research Data? Alternatives to Laboratory Animals, 2018; 46(5), 291-305. https://doi.org/10.1177/026119291704500605
- Laaldin et al., 'Chapter 8 Animal Models'. <u>https://doi.org/10.1016/B978-0-12-816352-8.00008-4</u>
- Bailey, J. (2019). "Chapter 19 Genetic Modification of Animals: Scientific and Ethical Issues". In Animal Experimentation: <u>https://doi.org/10.1163/9789004391192_020</u>
- Seok J, Warren HS, et al., Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci U S A. 2013 Feb 26;110(9):3507-12. <u>https://doi.org/10.1073/pnas.1222878110</u>
- Gawrylewski A. The Trouble with Animal Models. The Scientist 2007. <u>https://www.the-scientist.com/uncategorized/the-trouble-with-animal-models-46344</u>
- Akhtar A. The flaws and human harms of animal experimentation. Camb Q Healthc Ethics. 2015 Oct;24(4):407-19. <u>https://doi.org/10.1017/s0963180115000079</u>
- Johnson, L.S.M. (2020). The Trouble with Animal Models in Brain Research. In: Johnson, L., Fenton, A., Shriver, A. (eds) Neuroethics and Nonhuman Animals. Advances in Neuroethics. Springer, Cham. <u>https://doi.org/10.1007/978-3-030-31011-0_16</u>
- Pound, P., Ritskes-Hoitinga, M. Is it possible to overcome issues of external validity in preclinical animal research? Why most animal models are bound to fail. J Transl Med 16, 304 (2018).

https://doi.org/10.1186/s12967-018-1678-1

- Van Norman GA. Limitations of Animal Studies for Predicting Toxicity in Clinical Trials: Part 2: Potential Alternatives to the Use of Animals in Preclinical Trials. JACC Basic Transl Sci. 2020 Apr;5(4):387-397. <u>https://doi.org/10.1016/j.jacbts.2020.03.010</u>
- Andersen ML, Winter LMF. Animal models in biological and biomedical research experimental and ethical concerns. An Acad Bras Cienc. 2019;91(suppl 1):e20170238. Epub 2017 Sep 4. https://doi.org/10.1590/0001-3765201720170238
- Hutchinson I, Owen C, Bailey J. Modernizing Medical Research to Benefit People and Animals. Animals (Basel). 2022 May 3;12(9):1173. <u>https://doi.org/10.3390/ani12091173</u>
- Corrò C, Novellasdemunt L, Li VSW. A brief history of organoids. Am J Physiol Cell Physiol. 2020 Jul 1;319(1):C151-C165. Epub 2020 May 27. <u>https://doi.org/10.1152/ajpcell.00120.2020</u>
- Wang, Q., Guo, F., Jin, Y. *et* al. Applications of human organoids in the personalized treatment for digestive diseases. Sig Transduct Target Ther 7, 336 (2022). <u>https://doi.org/10.1038/s41392-022-01194-6</u>
- Depla JA, Mulder LA, et al., Human Brain Organoids as Models for Central Nervous System Viral Infection. Viruses. 2022 Mar 18;14(3):634. <u>https://doi.org/10.3390/v14030634</u>
- Han, Y., Yang, L., Lacko, L.A. *et* al. Human organoid models to study SARS-CoV-2 infection. Nat Methods 19, 418–428 (2022). https://doi.org/10.1038/s41592-022-01453-y
- Zhu, L., Liu, K., Feng, Q. *et* al. Cardiac Organoids: A 3D Technology for Modeling Heart Development and Disease. Stem Cell Rev and Rep (2022). <u>https://doi.org/10.1007/s12015-022-10385-1</u>
- Eicher AK, Kechele DO, et al. Functional human gastrointestinal organoids can be engineered from three primary germ layers derived separately from pluripotent stem cells. Cell Stem Cell. 2022 Jan 6;29(1):36-51.e6. <u>https://doi.org/10.1016/j.stem.2021.10.010</u>
- Hayashi, R., Okubo, T., Kudo, Y. et al. Generation of 3D lacrimal gland organoids from human pluripotent stem cells. Nature 605, 126–131 (2022). <u>https://doi.org/10.1038/s41586-022-04613-4</u>
- Trapecar M. Multiorgan microphysiological systems as tools to interrogate interorgan crosstalk and complex diseases. FEBS Lett. 2022 Mar;596(5):681-695. <u>https://doi.org/10.1002/1873-3468.14260</u>

- Lorna Ewart, et al., bioRxiv 2021.12.14.472674; https://doi.org/10.1101/2021.12.14.472674
- Workman MJ, Gleeson JP, et al., Enhanced Utilization of Induced Pluripotent Stem Cell-Derived Human Intestinal Organoids Using Microengineered Chips. Cell Mol Gastroenterol Hepatol. 2017 Dec 29;5(4):669-677.e2. <u>https://doi.org/10.1016/j.jcmgh.2017.12.008</u>
- Ingber DE. Human organs-on-chips for disease modelling, drug development and personalized medicine. Nat Rev Genet. 2022 Aug;23(8):467-491. <u>https://doi.org/10.1038/s41576-022-00466-9</u>
- Marabita F, James T, et al., Multiomics and digital monitoring during lifestyle changes reveal independent dimensions of human biology and health. Cell Syst. 2022 Mar 16;13(3):241-255.e7. https://doi.org/10.1016/j.cels.2021.11.001
- Durante, M.A., Rodriguez, D.A., *et* al. Single-cell analysis reveals new evolutionary complexity in uveal melanoma. Nat Commun 11, 496 (2020). <u>https://doi.org/10.1038/s41467-019-14256-1</u>
- Landhuis, E. Deep learning takes on tumours. <u>https://www.nature.com/articles/d41586-020-01128-8</u>
- Passini E, Britton OJ, et al., Human In Silico Drug Trials Demonstrate Higher Accuracy than Animal Models in Predicting Clinical Pro-Arrhythmic Cardiotoxicity. Front Physiol. 2017 Sep 12;8:668. https://doi.org/10.3389/fphys.2017.00668
- Misra BB, Langefeld CD, Olivier M, Cox LA. Integrated Omics: Tools, Advances, and Future Approaches. J Mol Endocrinol. 2018 Jul 13:JME-18-0055. <u>https://doi.org/10.1530/jme-18-0055</u>
- Bock C, Boutros M, Camp JG, et al., Human Cell Atlas 'Biological Network' Organoids. The Organoid Cell Atlas. Nat Biotechnol. 2021 Jan;39(1):13-17. <u>https://doi.org/10.1038/s41587-020-00762-x</u>
- Patient-on-a-chip Program. <u>https://emulatebio.com/press/cedars-emulate-patient-on-a-chip/</u>
- Passage of Senate Bill S. 5002, "FDA Modernization Act 2.0," Relating to Animal Testing. <u>https://www.cov.com/en/news-and-insights/insights/2022/10/passage-of-senate-bill-s-5002-fda-modernization-act-2-0-relating-to-animal-testing</u>